

α -e-Almost Compact Crisp Subsets of a Fuzzy Topological Space

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College) 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com

Abstract

Fuzzy *e*-open set is introduced and studied in [8]. Using this concept as a basic tool, in this paper we introduce α -*e*-almost compactness for crisp subsets of a topological space by using the concept of α -shading initiated by Gantner et.al [12], a generalized version of fuzzy covering. α -almost compactness is introduced in [13]. Here it is shown that α -*e*-almost compactness implies α -almost compactness [13], but not conversely. To achieve the converse here we introduce α -*e*-regular space. We characterize α -*e*-almost compactness via ordinary net and power set filterbases.

AMS Subject Classifications: 54A40, 54D20.

Keywords: Fuzzy *e*-open set, α -*e*-almost compact set (space), α -*e*-regularity, α^{e} -adherent point of net and filterbase, α -*e*-interiorly finite intersection property.

1. Introduction

After introducing fuzzy cover and fuzzy compactness by Chang [10], many mathematicians have engaged themselves to introduce different types of compactness by using different types of fuzzy open-like sets. In 1978, Gantner et. al [12] introduced generalized version of fuzzy cover and named it α -shading where $0 < \alpha < 1$. Using this concept as a basic tool, they also introduced α -compactness of a crisp subset of a space X where the underlying structure on X is a fuzzy topology. Afterwards, α -almost compactness [13], α -S-closedness [3], α -s-closedness [5], α - δ_p -almost compactness [4], α -p-almost compactness [6], α - β -almost compactness [7], λ - α almost compactness [9] are introduced and studied.